2018

KIKUTA Junichi, ISHII Masaru ≪Immunology and Cell Biology≫ Clarifying the interplay between bone cells in bone remodeling

2018-1-19
Publish Nature Communications(2018) doi:10.1038/s41467-017-02541-w

Osaka University study shows spatiotemporal intercellular interactions between mature osteoblasts and mature osteoclasts in bone homeostasis in vivo.

 Figure1. Simultaneous visualization of mOBs and mOCs in living bones using intravital two-photon microscopy. (A) A Tiling image of skull bone tissues. Cyan, mOBs; red, mOCs; blue, bone tissues. Scale bar, 300 µm. (B) Magnified images of colony region (left panels) and contact area (right panels). Open arrowheads, separated mOBs and mOCs; filled arrowheads, direct mOB–mOC contact. Scale bar, 20 µm.  Click to enlarge

Osaka – Bones are an essential component of our body, with numerous functions that include providing mechanical support of soft tissues, acting as levers for muscle action, and protecting the central nervous system. To accomplish their functions, bones undergo continuous destruction (resorption) carried out by osteoclasts, and formation by osteoblasts.

In the adult skeleton, the two processes must be in balance to maintain a constant, controlled amount of bone. An imbalance in the regulation can result in metabolic bone diseases, such as osteoporosis. Therefore, it is important to understand the spatial-temporal relationship and interaction between osteoblasts and terminally differentiated osteocytes (bone cells) and osteoclasts in vivo. However, it remains controversial whether these cell types physically interact with each other in bone remodeling. A multicenter study centered at Osaka University was conducted to elucidate this knowledge. The findings were recently published in Nature Communications .

“Using an intravital two-photon microscopy technique we developed, we investigated the communication between mature osteoblasts (mOBs) and mature osteoclasts (mOCs) in vivo,” study first author Masayuki Furuya explains. “mOBs and mOCs were visualized simultaneously in living skull bone tissues from transgenic mice that express enhanced cyan fluorescent protein (ECFP) driven mOBs and a red fluorescing protein controlled by mOCs.”

Intravital two-photon bone imaging is superior compared with conventional analyses of the shape and form of a tissue because it enables two-dimensional scanning in bone in a focal plane to observe cell shapes and the appearance of mOBs and mOCs in the body. Through this visualization method, the researchers successfully captured images of osteoblasts and osteoclasts interacting in real-time in living bone tissue. Next, the number and duration of mOB–mOC contact was analyzed using three-dimensional colocalization. mOBs and mOCs were found to mainly occupy discrete territories in the bone marrow in the steady state, although direct cell-to-cell contact exist in a spatiotemporally limited fashion.

Additionally, using a pH-sensing fluorescence probe, the team found that mOCs secrete protons (subatomic particles with a positive electrical charge) for bone resorption when they are not in contact with mOBs, whereas mOCs contacting mOBs are non-resorptive, suggesting that mOBs can inhibit bone resorption by direct contact.

“Although the molecular mechanisms involved in direct cell contact remain elusive, our study clearly demonstrates an important concept that dynamic communication between mOBs and mOCs regulates bone homeostasis,” corresponding author Masaru Ishii says. “Our results have potential to lead to development of a new line of therapy for modifying the association properties of these two cell types, especially in osteoporosis and tumor metastasis in bones.”

 Fig.2. Direct contact with mOBs inhibits the bone-resorbing activity of mOCs. (A) Images of bone-resorptive activity in skull bone tissues using a pH-sensing chemical probe. Green, pH probe; Cyan, mOBs; red, mOCs; yellow, contact areas; filled arrowheads, areas of mOB–mOC contact; open arrowheads, separated mOBs and mOCs. The actual values of bone-resorbing index (BRI) are shown to the right of the images. (B) Assessment of BRI of mOCs in contact, or not, with mOBs.
Click to enlarge

Article: The article, “Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo” was published in Nature Communications.

Summary: Bone homeostasis is regulated by communication between bone-forming mature osteoblasts (mOB) and bone-resorptive mature osteoclasts (mOC). However, the interaction between them in vivo remains unclear. A team of Osaka-centered researchers developed an intravital two-photon microscopy technique which reveals mOB and mOC functions are regulated via direct cell-cell contact between these cell types. The findings may pave the way for the development of new therapies for diseases such as osteoporosis and cancer bone metastasis.

Article: Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo Journal: Nature Communications

DOI: 10.1038/s41467-017-02541-w

Authors: Masayuki Furuya, Junichi Kikuta, Sayumi Fujimori, Shigeto Seno, Hiroki Maeda, Mai Shirazaki, Maki Uenaka, Hiroki Mizuno, Yoriko Iwamoto, Akito Morimoto, Kunihiko Hashimoto, Takeshi Ito, Yukihiro Isogai, Masafumi Kashii, Takashi Kaito, Shinsuke Ohba, Ung-il Chung, Alexander C. Lichtler, Kazuya Kikuchi, Hideo Matsuda, Hideki Yoshikawa and Masaru Ishii

Funding: CREST, Japan Science and Technology Agency; the Japan Society for the Promotion of Science (JSPS); Uehara Memorial Foundation; the Kanae Foundation for the Promotion of Medical Sciences; and the Takeda Science Foundation

Primary Keyword: Biology

Additional Keywords: Cell Biology

Twitter Comment: Direct cell-cell contact controls bone remodeling in vivo