Osaka University
Japanese
Department of Molecular Biology and Biochemistry
HOME
Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University
Publications
HOME > Publications

2017

  • Shinno, N., Kimura, H., Sada, R., Takiguchi, S., Mori, M., Fumoto, K., and Doki, Y., and Kikuchi, A. Activation of the Dickkopf1-CKAP4 pathway is associated with poor prognosis of esophageal cancer and anti-CKAP4 antibody may be a new therapeutic drug. Oncogene, in press
  • Yamamoto, H., Umeda, D., Matsumoto, S., and Kikuchi, A. LDL switches the LRP6 internalization route from flotillin-dependent to clathrin-dependent in hepatic cells. J. Cell Sci. 130, 3542-3556, 2017
  • Yamamoto, H., Sato, A., and Kikuchi, A. Apical secretion of Wnt1 in polarized epithelial cells is regulated by exocyst-mediated trafficking. J. Biochem. 162, 317-326, 2017
  • Fumoto, K., Takigawa-Imamura, H., Sumiyama, K., Kaneiwa, T., and Kikuchi, A. Modulation of apical constriction by Wnt signaling is required for lung epithelial shape transition. Development 144, 151-162, 2017. doi: 10.1242/dev.141325.
  • Harada, T., Yamamoto, H., Kishida, S., Kishida, M., Awada, C., Takao, T., and Kikuchi, A. Wnt5b-associated exosomes promote cancer cell migration and proliferation. Cancer Sci. 108, 42-52, 2017. doi: 10.1111/cas.13109.
[ Reviews ]
  • Kikuchi, A., Fumoto, K., Kimura, H. The Dickkopf1-cytoskeleton-associated protein 4 axis creates a novel signalling pathway and may represent a molecular target for cancer therapy. Br. J. Pharmacol. 2017 doi: 10.1111/bph.13863.
  • Matsumoto, S., Fujii, S., and Kikuchi, A. Arl4c is a key regulator of tubulogenesis and tumourigenesis as a target gene of Wnt-β-catenin and growth factor-Ras signalling. J. Biochem. 161, 27-35, 2017. doi: 10.1093/jb/mvw069.

2016

  • Fujii, S., Shinjo, K., Matsumoto, S., Harada, T., Nojima, S., Sato, S., Usami, Y., Toyosawa, S., Morii, E., Kondo, Y., and Kikuchi, A. Epigenetic upregulation of Arl4c expression, due to DNA hypomethylation in the 3'-untranslated region, promotes tumorigenesis in lung squamous cell carcinoma. Oncotarget 7, 81571-81587, 2016. doi: 10.18632/oncotarget.13147
  • Lim, BC., Matsumoto, S., Yamamoto, H., Mizuno, H., Kikuta, J., Ishii, M., and Kikuchi, A. Prickle1 promotes focal adhesion disassembly in cooperation with the CLASP-LL5β complex in migrating cells. J. Cell Sci. 129, 3115-3129, 2016
  • Kimura, H., Fumoto, K., Shojima, K., Nojima, S., Osugi, Y., Tomihara, H., Eguchi, H., Shintani, Y., Endo, E., Inoue, M., Doki, Y., Okumura, M., Morii, E., and Kikuchi, A. CKAP4 is involved in tumor progression as a Dickkopf1 receptor. J. Clin. Invest. 126, 2689-2705, 2016
  • Matsumoto, S., Kurimoto, T., Taketo, M., Fujii, S., and Kikuchi, A. Wnt-Myb pathway suppresses KIT expression to control the timing of salivary proacinar differentiation and duct formation. Development 143, 2311-2324, 2016
  • Mihara, E., Hirai, H., Yamamoto, H., Tamura-Kawakami, K., Matano, M., Kikuchi, A., Sato, T., and Takagi, J. Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin. eLife e11621, 2016
  • Abedini, A., Zamberlam, G., Lapointe, E., Tourigny, C., Boyer, A., Paquet, M., Hayashi, K., Honda, H., Kikuchi, A., Price, C., and Boerboom, D. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling. FASEB J. 30, 1534-1547, 2016

2015

  • Yamamoto, H., Awada, C., Matsumoto, S., Kaneiwa, T., Sugimoto, T., Takao, T., and Kikuchi, A. Basolateral secretion of Wnt5a in polarized epithelial cells is required for apical lumen formation. J. Cell Sci. 128, 1051-1063, 2015
  • Shojima, K., Sato, A., Hanaki, H., Tsujimoto, I., Nakamura, M., Hattori, K., Sato, Y., Dohi, K., Hirata, M., Yamamoto, H., and Kikuchi, A. Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. Sci. Rep. 27, 8042, 2015
  • Ibuka, S., Matsumoto, S., Fujii, S., Kikuchi, A. The P2Y2 receptor promotes Wnt3a and EGF-induced epithelial tubular formation of IEC6 cells by binding to integrins. J. Cell Sci., 128, 2156-2168, 2015
  • Sato, A., Kayama, H., Shojima, K., Matsumoto, S., Koyama, H., Minami, Y., Nojima, S., Morii, E., Honda, H., Takeda, K., Kikuchi, A. The Wnt5a-Ror2 axis promotes the signaling circuit between interleukin-12 and interferon-γ in colitis. Sci. Rep., 5, 10536, 2015
  • Fujii, S., Matsumoto, S., Nojima, S. Morii, E., and Kikuchi, A. Arl4c expression in colorectal and lung cancers promotes tumorigenesis and may represent a novel therapeutic target. Oncogene, 34, 4834-4844, 2015

2014

  • Matsumoto, S., Fujii, S., Sato, A., Ibuka, S., Kagawa, Y., Ishii, M., and Kikuchi, A. A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures. EMBO J. 33, 702-718, 2014
[ Reviews ]
  • Akira Kikuchi, Shinji Matsumoto, Katsumi Fumoto, and Akira Sato. Modulation of Wnt Signaling by Endocytosis of Receptor Complexes. Wnt Signaling. Chaper 8 in Wnt signaling in Development and Disease, Edited by Stefan Hoffer and Randol Moon, John Wiley and Sons, Inc. 2014

2013

  • Gon H, Fumoto K, Ku Y, Matsumoto, S., and Kikuchi, A. Wnt5a signaling promotes apical and basolateral polarization of single epithelial cells. Mol. Biol. Cell. 24, 3764-74, 2013
  • Kagawa, Y., Matsumoto, S., Kamioka, Y., Mimori, K., Naito, Y., Ishii, T., Okuzaki, D., Nishida, N., Maeda, S., Naito, A., Kikuta, J., Nishikawa, K., Nishimura, J., Haraguchi, N., Takemasa, I., Mizushima, T., Ikeda, M., Yamamoto, H., Sekimoto, M., Ishii, H., Doki, Y., Matsuda, M., Kikuchi, A., Mori, M., and Ishii, M. Cell Cycle-Dependent Rho GTPase Activity Dynamically Regulates Cancer Cell Motility and Invasion In Vivo. PLoS ONE. 8, e83629, 2013
  • Yamamoto, H., Awada, C., Hanaki, H., Sakane, H., Tsujimoto, I., Takahashi, Y., Takao, T., and Kikuchi, A. Apical and basolateral secretion of Wnt11 and Wnt3a in polarized epithelial cells is regulated by different mechanisms. J. Cell Sci. 126, 2931-2943, 2013
  • Kiyohashi, K., Kakinuma, S., Kamiya, A., Sakamoto, N., Nitta, S., Yamanaka, H., Yoshino, K., Fijuki, J., Murakawa, M., Kusano-Kitazume, A., Shimizu, H., Okamoto, R., Azuma, S., Nakagawa, M., Asahina, Y., Tanimizu, N., Kikuchi, A., Nakauchi, H., and Watanabe, M. Wnt5a signaling mediates biliary differentiation of fetal hepatic stem/progenitor cells. Hepatology 57, 2502-2513, 2013

2012

  • Fumoto, K., Kikuchi, K., Gon, H., and Kikuchi, A. Wnt5a signaling controls cytokinesis by positioning ESCRT-III to the proper site at the midbody. J. Cell Sci. 125, 4822-4832, 2012
  • Hida, T., Yamashita, N., Usui, H., Nakamura, F., Sasaki, Y., Kikuchi, A., and Goshima, Y. GSK3β/Axin-1/β-catenin complex is involved in semaphorin3A signaling. J. Neurosci. 32, 11905-11918, 2012
  • Naito, A., Sumida, T., Nomura, S., Liu, M.L., Higo, T., Nakagawa, A., Okada, K., Sakai, T., Hashimoto, A., Hara, Y., Shimizu, I., Zhu, W., Toko, H., Katada, A., Akazawa, H., Oka, T., Lee, J.K., Minamino, T., Nagai, T., Walsh, K., Kikuchi, A., Matsumoto, M., Botto, M., Shiojima, I., Komuro, I. Complement c1q activates canonical wnt signaling and promotes aging-related phenotypes. Cell 149, 1298-313, 2012
  • Ishida-Takagishi, M., Enomoto, A., Asai, N., Ushida, K., Watanabe, T., Hasimoto, T., Kato, T., Weng, L., Matsumoto, S., Asai, M., Murakumo, Y., Kaibuchi, K., Kikuchi, A., and Takahashi, M. The Dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility. Nature Communications 3, 859, 2012
  • Hanaki, H., Yamamoto, H., Sakane, H., Matsumoto, S., Ohdan, H., Sato, A., and Kikuchi, A. An Wnt5a-antibody suppresses metastasis of gastric cancer cells in vivo by inhibiting receptor-mediated endocytosis. Mol. Cancer Ther. 11, 298-307, 2012
  • Sakane, H., Yamamoto, H., Matsumoto, S., Sato, A., and Kikuchi, A. Localization of glypican-4 in different membrane microdomains is involved in the regulation of Wnt signaling. J. Cell Sci. 125, 449-460, 2012
[ Reviews ]
  • Kikuchi, A., Yamamoto, H., Sato, A., and Matsumoto, S. Wnt5a: its signaling, functions, and implication in diseases. Acta physiol (Oxf). 204, 17-33, 2012
  • Matsumoto, S., and Kikuchi, A. Regulation of focal adhesion dynamics by Wnt5a signaling. Methods in Mol. Biol. 839, 215-227, 2012

2011

  • Kagermeier-Schenk, B., Wehner, D., Özhan-Kizil, G., Yamamoto, H., Jian Li, Kirchner, K., Hoffmann, C., Stern,P., Kikuchi, A., Schambony, A., and Weidinger, G. The transmembrane protein Waif1/5T4 inhibits Wnt/β-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization. Dev. Cell 21, 1129-1143, 2011
  • Deraz, E.M., Kudo, Y., Yoshida, M., Obayashi, M., Tsunematsu, T., Tani, H., Siriwardena, S., Keikhaee, M.R., Qi, G., Iizuka, S., Ogawa, I., Campisi, G., Lo Muzio, L., Abiko, Y., Kikuchi, A., Takata, T. MMP-10/Stromelysin-2 Promotes Invasion of Head and Neck Cancer. PLoS ONE 6(10), e25438, 2011
  • Miyamoto, T., Porazinski, S., Wang, H., Borovina, A., Ciruna, B., Shimizu, A., Kajii, T., Kikuchi, A., Furutani-Seiki, M., and Matsuura, S. Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Hum. Mol. Genet. 20, 2058-2070, 2011
[ Reviews ]
  • Kikuchi, A., Yamamoto, H., Sato, A., Mastumoto, S. New insights into the mechanism of Wnt signaling pathway activation. Int. Rev. Cell. Mol. Biol. 291, 21-71, 2011

2010

  • Kitagawa, K., Kotake, Y., Hiramatsu, Y., Liu, N., Suzuki, S., Nakamura, S., Kikuchi, A., and Kitagawa, M. GSK3 regulates expression of human and mouse c-Myb via different mechanisms. Cell Division 5, 27, 2010
  • Kikuchi, K., Niikura, Y., Kitagawa, K., and Kikuchi, A. Dishevelled, a Wnt signaling component, is involved in mitotic progression with Plk1. EMBO J. 29, 3470-3483, 2010
  • Nishida, M., Itsukushima, S., Nomachi, A., Endo, M., Wang, Z., Inaba, D., Qiao, S., Takada, S., Kikuchi, A., and Minami, Y. Ror2/Frizzled complex mediates Wnt5a-induced AP-1 activation by regulating Dishevelled polymerization. Mol. Cell. Biol. 30, 3610-3619
  • Matsumoto, S., Fumoto, K., Okamoto, T., Kaibuchi, K., and Kikuchi, A. Binding of APC and disheveled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells. EMBO J. 29, 1192-1204, 2010
  • Yamamoto, H., Oue, N., Sato, A., Hasegawa, Y., Yamamoto, H., Matsubara, A., Yasui, W., and Kikuchi, A. Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene 29, 2036-2046, 2010
  • Sato, A., Yamamoto, H., Sakane, H., Koyama, H., and Kikuchi, A. Wnt5a regulates distinct signaling pathways by binding to Frizzled2. EMBO J. 29, 41-54, 2010
  • Sakane, H., Yamamoto, H., and Kikuchi, A. LRP6 is internalized by Dkk1 to suppress its phosphorylation in the lipid raft and is recycled for reuse. J. Cell Sci. 123, 360-368, 2010

2009

  • Yamamoto, H., Kitadai,. Y., Yamamoto, H., Oue, N., Ohdan, H., Yasui, W., and Kikuchi, A. Laminin γ2 mediates Wnt5a-induced invasion of gastric Cancer cells. Gastroenterology 137, 242-252, 2009
  • Fumoto, K., Kadono, M., Izumi, N., and Kikuchi, A. Axin localizes to the centrosome and is involved in microtubule nucleation. EMBO R. 10, 606-613, 2009
  • Inoue, A., Nagafuchi, A., Kikuchi, A. Retinoic acid induces discrete Wnt-signaling-dependent differentiation in F9 cells. Biochem. Biophys. Res. Commun. 390, 564-569, 2009
  • Nishiyama, M., Oshikawa, K., Tukada, Y., Nakagawa, T., Iemura S., Natsume, T., Fan Y., Kikuchi, A., Skoultchi, A. I., and Nakayama, K. CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis. Nat. Cell Biol. 11, 172-182, 2009
  • Kitagawa K, Hiramatsu Y, Uchida C, Isobe T, Hattori T, Oda T, Shibata K, Nakamura S, Kikuchi, A., Kitagawa M. Fbw7 promotes ubiquitin-dependent degradation of c-Myb, involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb. Oncogene 28, 2393-2405, 2009
  • Miyashita, T., Koda, M., Kitajo, K., Yamazaki, M., Takahashi, K., Kikuchi, A., and Yamashita, T. Wnt-Ryk signaling mediates axon growth inhibition and limit functional recovery after spinal cord injury. J. Neurotrauma 26, 955-964, 2009
[ Reviews ]
  • Kikuchi, A., Yamamoto, H., and Sato, A. Selective activation of mechanisms of Wnt signaling pathways. Trends Cell Biol. 9, 119-129, 2009

2008

  • Yamamoto, H., Sakane, H., Yamamoto, H., Michiue, T., and Kikuchi, A. Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of β-catenin signaling. Dev. Cell 15, 37-48, 2008
  • Zhu, W., Shiojima, I., Ito, Y., Li, Z., Ikeda, H., Yoshida, M., Naito, A., Nishi, J., Ueno, H., Umezawa, A., Minamino1, T., Nagai, T., Kikuchi, A., Asashima, M., and Komuro, I. IGFBP-4 is a canonical Wnt inhibitor that promotes cardiac myogenesis. Nature 454, 345-349, 2008
  • Izumi, N., Fumoto, K., Izumi, S., and Kikuchi, A., GSK-3β regulates proper mitotic spindle formation in cooperation with a component of the γ-tubulin ring complex, GCP5. J. Biol. Chem. 283, 12981-12991, 2008
  • Fumoto,K., Lee, P-C., Saya, H., and Kikuchi, A. AIP regulates stability of Aurora-A at early mitotic phase coordinately with GSK-3β. Oncogene 27, 4478-4487, 2008
  • Ohtsubo, M., Yasunaga, S., Ohno, Y., Tsumura, M., Okada, S., Ishikawa, N., Shirao, K., Kikuchi, A., Nishitani, H., Kobayashi, M., and Takihara, Y. Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc. Natl. Acad. Sci. USA 105, 10396-10401, 2008
  • Hatano, H., Kudo, Y., Ogawa, I., Tsunematsu, T., Kikuchi, A., Abiko, Y., and Takata, T. IFITM1 promotes the invasion at the early stage of head and neck cancer progression. Cli. Can. Res. 14, 6097-6105, 2008
[ Reviews ]
  • Kikuchi, A. and Yamamoto, H. Tumor formation due to abnormalities in the β-catenin-independent pathway of Wnt signaling. Cancer Sci. 99, 202-208, 2008

2007

  • Schwarz-Romond, T., Fiedler1, M., Shibata, N., Butler, P. J. G., Kikuchi, A., Higuchi, Y., and Bienz, M. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat. Strut. Mol. Biol. 14, 484-492, 2007
  • Ihara, M., Koyama, H., Yasuhiro Uchimura, Y., Saitoh,H., and Kikuchi, A. Non-covalent binding of SUMO protease to SUMO is necessary for enzymatic activities and cell growth. J. Biol. Chem. 282, 16465-16475, 2007
  • Kurayoshi, M., Yamamoto, H., Takada, S., Izumi, S., and Kikuchi, A. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signaling. Biochem. J. 402, 515-523, 2007
  • Kishida, S., Hamao, K., Inoue, M., Hasegawa, M., Matsuura, Y., Mikoshiba, K., Fukuda, M., and Kikuchi, A. Dvl regulates endo- and exocytotic processes through binding to synaptotagmin. Genes Cells 12, 49-61, 2007
  • Komekado, H., Yamamoto, H., Chiba, T., and Kikuchi, A. Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells 12, 521-534, 2007
  • Yamamoto, H., Yoo, S-K, Nishita, M., Kikuchi, A., and Minami, Y. Wnt5a modulates glycogen synthase kinase 3 to induce phospshorylation of receptor tyrosine kinase Ror2. Genes Cells 12, 1215-1223, 2007
  • Taniguchi, K., Ayada, T., Kchiyama, K., Kohno, R., Yonemitsu, Y., Kikuchi, A., Maehara, Y., and Yoshimura, A. Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem. Biophys. Res. Commun. 352, 896-902, 2007
  • Oue, N., Yoshida, Y., Noguchi, T., Sentani, K, Kikuchi, A., and Yasui, Y. Increased expression of h-prune is associated with tumor progression and poor survival in gastric cancer. Cancer Sci. 98, 1198-1205, 2007
[ Reviews ]
  • Kikuchi, A., Kishida, S., and Yamamoto, H. Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal. 19, 659-671, 2007
  • Kikuchi, A. and Yamamoto, H. Regulation of Wnt signaling by receptor-mediated endocytosis. J. Biochem. 141, 443-451, 2007

2006

  • Yamamoto, H., Komekado, H., and Kikuchi, A. Caveolin is necessary for Wnt-3a-induced internalization of LRP6 and accumulation of β-catenin. Dev. Cell 11, 213-223, 2006
  • Fumoto, K., Hoogenraad, C. C., and Kikuchi, A. GSK-3β-regulated interaction of BICD with dynein is involved in microtubule anchorage at centrosome. EMBO J. 25, 5670-5682, 2006
  • Kobayashi, T., Hino, S., Oue, N., Asahara, T., Zollo, M., Yasui, W., and Kikuchi, A. Glycogen synthase kinase-3 and h-prune regulate cell migration by modulating focal adhesions. Mol. Cell. Biol. 26, 898-911, 2006
  • Kurayoshi, M., Oue, N., Yamamoto, H., Kishida, M., Inoue, A., Asahara, T., Yasui, W., and Kikuchi, A. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 66, 10439-10448, 2006
  • Nishita, M., Yoo, S-K., Nomachi, A., Kani, S., Sougawa, N., Ohta, Y., Takada, S., Kikuchi, A.,, and Minami, Y. Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J. Cell Biol. 175, 555-562, 2006
  • Naito, A., Shiojima, I., Akazawa, H., Hidaka, K., Morisaki, T., Kikuchi, A., and Komuro, I. Developmemtal stage-specific, biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proc. Natl. Acad. Sci. USA 103, 19812-19817, 2006
  • Yamashina, K., Yamamoto, H., Chayama, K., Nakajima, K., and Kikuchi, A. Suppression of STAT3 activity by Duplin, Which is a negative regulator of the Wnt signal. J. Biochem. 139, 305-314, 2006
  • Tsukamoto, S., Ihara, R., Aizawa, A., Kishida, S., Kikuchi, A., Imai, H., and Minami, N. Oog1, an oocyte-specific protein, interacts with Ras and Ras-signaling proteins during early embryogenesis. Biochem. Biophys. Res. Commun. 343, 1105-1112, 2006
[ Reviews ]
  • Kikuchi, A., Kishida, S., and Yamamoto, H. Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp. Mol. Med. 38, 1-10, 2006

2005

  • Ihara, M., Yamamoto, H., and Kikuchi, A. SUMO-1 modification of PIASy, an E3 ligase, is necessary for PIASy-dependent activation of Tcf-4. Mol. Cell. Biol. 25, 3506-3518, 2005
  • Hino, S-.I., Tanji, C., Nakayama, K-I., and Kikuchi, A. Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase stabilizes β-catenin through inhibition of its ubiquitination. Mol. Cell. Biol. 25, 9063-9072, 2005
  • Yoshimura, T., Kawano, Y., Arimura, N., Kawabata, S., Kikuchi, A., and Kaibuchi K. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120, 137-149, 2005
  • Shimura, T., Takenaka, Y., Fukumori, T., Tsutsumi, S., Okada, K., Hogan, V., Kikuchi, A., Kuwano, H., and Raz, A. Implication of galectin-3 in Wnt signaling. Cancer Res. 65, 3535-3537, 2005
  • Sugiyama, S., Kishida, S., Chyayama, K., Koyama, S., and Kikuchi, A. Ubiquitin-interacting motifs of Epsin are involved in the regulation of insulin-dependent endocytosis. J. Biochem. 137, 355-364, 2005

2004

  • Kishida, S., Yamamoto, H., and Kikuchi, A. Wnt-3a and Dvl induce neurite retraction by activating Rho-associated kinase. Mol. Cell. Biol. 24, 4487-4501, 2004
  • Nishiyama, M., Nakayama, K., Tsunematsu, R., Tsukiyama, T., Kikuchi, A., and Nakayama, K-I. Early embryonic death in mice lacking the β-catenin-binding protein Duplin. Mol. Cell. Biol. 24, 8386-8394, 2004
  • Salas, T.R., Kim, J., Vakar-Lopez, F., Sabichi, A.L., Troncoso, P., Jenster, G., Kikuchi, A., Chen, S.Y., Shemshedini, L., Suraokar, M., Logothetis, C.J., DiGiovanni, J., Lippman, S.M., and Menter, D.G. Glycogen synthase kinase-3β is involved in the phosphorylation and suppression of androgen receptor activity. J. Biol. Chem. 279, 19191-19200, 2004
  • Kani, S. Oishi, I., Yamamoto, H., Yoda, A., Suzuki, H., Nomachi, A., Iozumi, K., Nishita, M., Kikuchi, A., Takumi, T., and Minami. Y. The receptor tyrosine kinase Ror2 associates with and is activate by casein kinase Iε. J. Biol. Chem. 279, 50102-50109, 2004
  • Shimura, T., Takenaka, Y., Tsutsumi, S., Hogan, V., Kikuchi, A., and Raz, A. Galectin-3 a novel binding partner of β-catenin. Cancer Res. 64, 6363-6367, 2004
  • Hirabayashi, S., Nishimura, W., Iida, J., Kansaku, A., Kishida, S., Kikuchi, A., Tanaka, N., and Hata, Y. Synaptic scaffolding molecule interacts with Axin. J. Neurochem. 90, 332-339, 2004
  • Komatsu, T., Mizusaki, H., Mukai, T., Ogawa, H., Baba, D., Shirakawa, M., Hatakeyama, S., Nakayama, K-I., Yamamoto, H., Kikuchi, A., and Morohashi, K-I. SUMO-1 modification of the synergy control motif of Ad4BP/SF-1 regulates synergistic transcription between Ad4BP/SF-1 and Sox9. Mol. End. 18, 2451-2462, 2004
  • Sato, A., Kishida, S., Tanaka, T., Kikuchi, A., Kodama, T., Asashima, M., and Nishinakamura, R. Sall1, a causative gene for Townes-Brocks syndrome, enhances the canonical Wnt signaling by localizing to heterochromatin. Biochem. Biophys. Res. Commun. 319, 103-113, 2004
  • Yukita, A., Michiue, T., Fukui, A., Sakurai, K., Yamamoto, H., Ihara, M., Kikuchi, A., and Asashima, M. XSENP1, a novel sumo-specific protease in Xenopus, inhibits normal head formation by down-regulation of Wnt/ β-catenin signaling. Genes Cells 9, 732-726, 2004
  • Ishizaki, Y., Ikeda, S., Fujimori, M., Shimizu, Y., Kurihara, T., Itamoto, T., Kikuchi, A., Okajima, M., and Asahara, T. Immunohistochemical analysis and mutational analyses of β-catenin, Axin family and APC genes in hepatocellular carcinomas. Int. J. Oncol. 24, 1077-1083, 2004
  • Michiue, T., Fukui, A., Yukita, A., Sakurai, K., Kikuchi, A., and Asashima, M. Idax, a citoplasmic inhibitor of the canonical Wnt signaling, is required for the anterior neural structure formation in Xenopus. Dev. Dyn. 230, 79-90, 2004
  • Sakurai, K., Michiue, T., Kikuchi, A., and Asashima, M. Inhibition of the canonical Wnt signaling pathway in cytoplasm, a novel property of the carboxyl terminal domains of two Xenopus ELL genes. Zoolog Sci. 21, 407-416, 2004

2003

  • Yamamoto, H., Ihara, M., Matsuura, Y., and Kikuchi, A. Sumoylation is involved in β-catenin-dependent activation of Tcf-4. EMBO J. 22, 2047-2059, 2003
  • Hirata, Y., Andoh, T., Asahara, T., and Kikuchi, A. Yeast glycogen synthase kinase-3 activates Msn2-dependent transcription of stress responsible genes. Mol. Biol. Cell 14, 302-312, 2003
  • Hino, S.-I., Michiue, T., Asashima, M., and Kikuchi, A. Casein kinase Iε enhances the binding of Dvl-1 to Frat-1 and is essential for Wnt-3a-induced accumulation of β-catenin. J. Biol. Chem. 278, 14066-14073, 2003
  • Yunoue, S., Tokuo, H., Feng, L., Ozawa, T., Nishi, T., Fukunaga, K., Kikuchi, A., Hattori, S., Kuratsu, J., Saya, H., and Araki, N. Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GAP function towards Ras. J. Biol. Chem. 278, 26958-26969, 2003
  • Salas, T. R., David, R. J., Kikuchi, A., Lippman, S. M., and Menter, D. G. Alleviating the suppression of glycogen synthase kinase-3β by Akt leads to the phosphorylation of CREB and its transactivation in intact cells nuclei. J. Biol. Chem. 278, 41338-41346, 2003
  • Nagao, Y., Yamashita, H., Takahashi, T., Kishida, S., Nakamura, T., Hattori, N., Kikuchi, A., and Matsumoto, M. Siah-1 facilitates ubiquitination and degradation of Synphilin-1, and is involved in dopamine release and biosynthesis. J. Biol. Chem. 278, 51504-51514, 2003
  • Nakayama, K., Hatakeyama, S., Maruyama, S.-I., Kikuchi, A., Onoe, K., Good, R. A., and Nakayama, K.-I. Impaired degradation of inhibitory subunit of NF-κB (IκB) and β-catenin as a result of targeted disruption of the β-TrCP1 gene. Proc. Natl. Acad. Sci. USA 100, 8752-8757, 2003
  • Oshita, A., Kishida, S., Kobayashi, H., Michiue, T., Asahara, T., Asashima, M., and Kikuchi, A. Identification and characterization of a novel Dvl-binding protein that suppresses Wnt signaling pathway. Genes Cells 8, 1005-1017, 2003
  • Sakashita, G., Shima, H., Komatsu, M., Urano, T., Kikuchi, A., Kikuchi, K. Interaction between phosphatase inhibitor-2 and glycogen synthase kinase-3β in intact cells. J. Biochem. 133, 165-171, 2003
  • Kawai, M., Kawashima, S., Sakoda, T., Toh, R., Kikuchi, A., Yamauchi-Takihara, K., Kunisada, K., and Yokoyama, M. Ral GDP dissociation stimulator and Ral GTPase are involved in myocardial hypertrophy. Hypertension 41, 956-962, 2003
[ Reviews ]
  • Kikuchi, A.: Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci. 94: 225-229, 2003

2002

  • Kadoya, T., Yamamoto, H., Suzuki, T., Yukita, A., Fukui, A., Michiue, T., Asashima, M., Tanaka, K., Asashima, M., and Kikuchi, A. Desumoylation activity of Axam, a novel Axin-binding protein, is involved in downregulation of β-catenin. Mol. Cell. Biol. 22, 3803-3819, 2002
  • Kobayashi, M., Kishida, S., Fukui, A., Michiue, T., Miyamoto, Y., Okamoto, T., Yoneda, Y., Asashima, M., and Kikuchi, A. Nuclear localization of Duplin, a β-Catenin-binding protein, is essential for its inhibitory activity on the Wnt signaling pathway. J. Biol. Chem. 277, 5816-5822, 2002
  • Matsuzaki, T., Hanai, S., Kishi, H., Liu, Z., Bao, Y., Kikuchi, A., Tsuchida, K., and Sugino, H. Regulation of endocytosis of activin type II receptors by a novel PDZ protein through Ral/Ral-binding protein 1-dependent pathway. J. Biol. Chem. 277, 19008-19018, 2002
  • Tanji, C., Yamamoto, H., Yorioka, N., Kohno, N., Kikuchi, K., and Kikuchi, A. A-kinase anchoring protein AKAP220 binds to glycogen synthase Kinase-3β (GSK-3β) and mediates protein kinase A-dependent inhibition of GSK-3β. J. Biol. Chem. 277, 36955-36961, 2002
  • Oshiro, T., Koyama, S., Sugiyama, S., Kondo, A., Onodera, Y., Asahara, T., Sabe, H., and Kikuchi, A. Interaction of POB1, a downstream molecule of small G protein Ral, with PAG2, a paxillin binding protein, regulates cell migration. J. Biol. Chem. 277, 38618-38626, 2002
  • Andoh, T., Hirata, Y., and Kikuchi, A. PY motifs of Rod1 are required for binding to Rsp5 and for drug resistance. FEBS Lett. 525, 131-134, 2002

2001

  • Hino, S., Kishida, S., Michiue, T., Fukui, A., Sakamoto, I., Takada, S., Asashima, M., and Kikuchi, A. Inhibition of Wnt signaling pathway by Idax, a novel Dvl-binding protein. Mol. Cell. Biol. 21, 330-342, 2001
  • Furuhashi, M., Yagi, K., Yamamoto, H., Furusawa, Y., Shimada, S., Nakamura, Y., Kikuchi, A., Miyazono, K., and Kato, M. Axin facilitates Smad3 activation in transforming growth factor-β signaling. Mol. Cell. Biol. 21, 5132-5141, 2001
  • Itoh, T., Koshiba, S., Kigawa, T., Kikuchi, A., Yokoyama, S., Takenawa, T. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047-1051, 2001
  • Yamamoto, H., Hinoi, T., Fukui, A., Michiue, T., Usui, H., Janssens, V., Van Hoof, C., Goris, J., Asashima, M., and Kikuchi, A. Inhibition of the Wnt signaling pathway by the PR61 subunit of protein phosphatase 2A. J. Biol. Chem. 276, 26875-26882, 2001
  • Kishida, M., Hino, S.-I., Michiue, T., Yamamoto H., Kishida, S., Fukui, A., Asashima, M., and Kikuchi, A. Synergistic activation of the Wnt signaling pathway by Dvl and casein kinase Iε. J. Biol. Chem. 276, 33147-33155, 2001
  • Chen, W., Hu, L. A., Semenov, M. V., Yanagawa, S., Kikuchi, A., Lefkowitz, R. J., and Miller, W. E. β-arrestin1 modulates lymphoid enhnacer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proc. Natl. Acad. Sci. USA 98, 14889-14894, 2001
  • Kawamura, Y., Kikuchi, A., Takada, R., Takada, S., Sudoh, S., Shibamoto, S., Yanagisawa, K., and Komano, H. Inhibitory effect of presenilin 1 mutation on the Wnt signaling pathway by enhancement of β-catenin phosphorylation. Eur. J. Biochem. 268, 3036-3041, 2001
  • Koshiba, S., Kigawa, T., Kikuchi, A., and Yokoyama, S. Solution structure of the epsin N-terminal homology (ENTH) domain of human epsin. J. Struct. Funct. Genomics 2, 1-8, 2001
  • Koyano, T., Kawamoto, T., Kikuchi, A., Shen, M., Kuruta, Y., Tsutsumi, S., Fujimoto, K., Noshiro, M., Fujii, K., and Kato, Y. Chondrocyte-derived ezrin-like domain containing protein (CDEP), a rho guanine nucleotide exchange factor, is inducible in chondrocytes by parathyroid hormone and cyclic AMP and has transforming activity in NIH3T3 cells. Ostearthritis Cartilage 9, S64-S68, 2001

2000

  • Andoh, T., Hirata, Y., and Kikuchi, A. Yeast glycogen synthase kinase 3 is involved in the protein degradation in cooperation with Bul1, Bul2, and Rsp5. Mol. Cell. Biol. 20, 6712-6720, 2000
  • Kariya, K., Koyama, S., Nakashima, S., Oshiro, T., Morinaka, K., and Kikuchi, A. Regulation of complex formation of POB1/Epsin/Adaptor complex 2 by mitotic phosphorylation. J. Biol. Chem. 275, 18399-18406, 2000
  • Sakamoto, I., Kishida, S., Fukui, A., Kishida, M., Yamamoto, H., Hino, S-I., Michiue, T., Takada, S., Asashima, M., and Kikuchi, A. A novel β-catenin binding protein inhibits β-catenin-dependent Tcf activation and axis formation. J. Biol. Chem. 275, 32871-32878, 2000
  • Hinoi, T., Yamamoto, H., Kishida, M., Takada, S., Kishida, S., and Kikuchi, A. Complex formation of adenomatous polyposis coli gene product and Axin facilitates GSK-3β -dependent phosphorylation of β-catenin and downregulates β-Catenin. J. Biol. Chem. 275, 34399-34406, 2000
  • Kadoya, T., Kishida, S., Fukui, A., Hinoi, T., Michiue, T., Asashima, M., and Kikuchi, A. Inhibition of Wnt signaling pathway by a novel Axin-binding protein. J. Biol. Chem. 275, 37030-37037, 2000
  • Ikeda, S., Kishida, M., Matsuura, Y., Usui, H., and Kikuchi, A. GSK-3β-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by β-catenin and protein phosphatase 2A complexed with Axin. Oncogene 19, 308-318, 2000
  • Hanada, N., Makino, K., Koga, H., Morisaki, T., Kuwahara, H., Masuko, N., Tabira, Y., Hiraoka, T., Kitamura, N., Kikuchi, A., and Saya, H. NE-dlg, a mammalian homolog of Drosophila DLG tumor suppressor, induces growth suppression and impairment of cell adhesion: Possible involvement of down-regulation of β-catenin by NE-dlg expression. Int. J. Cancer 86, 480-488, 2000
  • Fukui, A., Kishida, S., Kikuchi, A., and Asashima, M. Effects of rat Axin domains on axis formation in Xenopus embryos. Develop. Growth Differ. 42, 489-498, 2000
[ Reviews ]
  • Kikuchi, A. Regulation of β-catenin signaling in the Wnt pathway. Biochem. Biophys. Res. Commun. 268, 243-248, 2000

1999

  • Nakashima, S., Morinaka, K., Koyama, S., Ikeda, M., Kishida, M., Okawa, K., Iwamatsu, A., Kishida, S., and Kikuchi, A. Small G protein Ral and its downstream molecules regulate endocytosis of EGF and insulin receptors. EMBO J. 18, 3629-3642, 1999
  • Kitagawa, M., Hatakeyama, S., Shirane, M., Matsumoto, M., Ishida, N., Hattori, K., Nakamichi, I., Kikuchi, A., Nakayama, K-I., and Nakayama, K. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 18, 2401-2410, 1999
  • Kishida, S., Yamamoto, H., Hino, S., Ikeda, S., Kishida, M., and Kikuchi, A. DIX domains of Dvl and Axin are necessary for protein interactions and their ability to regulate β-catenin stability. Mol. Cell. Biol. 19, 4414-4422, 1999
  • Sawamoto, K., Winge,P., Koyama, S., Hirota, Y., Yamada, C., Miyao, S., Yoshikawa, S., Jin, M-h., Kikuchi, A., and Okano, H. The Drosophila Ral GTPase regulates developmental cell shape changes through the Jun NH2-terminal kinase pathway. J. Cell Biol. 146, 361-372, 1999
  • Yamamoto, H., Kishida, S., Kishida, M., Ikeda, S., Takada, S., and Kikuchi, A. Phosphorylation of Axin, a Wnt signal negative regulator, by glycogen synthase kinase-3β regulates its stability. J. Biol. Chem. 274, 10681-10684, 1999
  • Fukata, M., Kuroda, S., Nakagawa, M., Kawajiri, A., Itoh, N., Shoji, I., Matsuura, Y., Yonehara, S., Fujisawa, H., Kikuchi, A., and Kaibuchi, K. Cdc42 and Rac1 regulate the interaction of IQGAP1 with β-catenin. J. Biol. Chem. 274, 26044-26050, 1999
  • Kodama, S., Ikeda, S., Asahara, T., Kishida, M., and Kikuchi, A. Axin directly interacts with plakoglobin and regulates its stability. J. Biol. Chem. 274, 27682-27688, 1999
  • Moriguchi, T., Kawachi, K., Kamakura, S., Masuyama, N., Yamanaka, H., Matsumoto, K., Kikuchi, A., and Nishida, E. Distinct domains of mouse dishevelled are responsible for the c-Jun N-terminal kinase/stress-activated protein kinase activation and the axis formation in vertebrates. J. Biol. Chem. 274, 30957-30962, 1999
  • Kishida, M., Koyama, S., Kishida, S., Matsubara, K., Nakashima, S., Higano, K., Takada, R., Takada, S., and Kikuchi, A. Axin prevents Wnt-3a-induced accumulation of β-catenin. Oncogene 18, 979-985, 1999
  • Matsubara, K., Kishida, S., Matsuura, Y., Kitayama, H., Noda, M., and Kikuchi, A. Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene 18, 1303-1312, 1999
  • Sawamoto, K., Yamada, C., Kishida, S., Hirota, Y., Taguchi, A., Kikuchi, A., and Okano, H. Ectopic expression of constitutively activated Ral GTPase inhibits cell shape changes during Drosophila eye development. Oncogene 18, 1967-1974, 1999
  • Morinaka, K., Koyama, S., Nakashima, S., Hinoi, T., Okawa, K., Iwamatsu, A., and Kikuchi, A. Epsin binds to the EH domain of POB1 and regulates receptor-mediated endocytosis. Oncogene 18, 5915-5922, 1999
  • Shirouzu, M., Hashimoto, K., Kikuchi, A., and Yokoyama, S. Double-mutant analysis of the interaction of Ras with the Ras-binding domain of RGL. Biochemistry 38, 5103-5110, 1999
  • Koshiba, S., Kigawa, T., Iwahara, J., Kikuchi, A., and Yokoyama, S. Solution structure of the Eps15 homology domain of a human POB1 (partner of RalBP1). FEBS Lett. 442, 138-142, 1999
[ Reviews ]
  • Kikuchi, A.: Roles of Axin in the Wnt signaling pathway. Cell Signal. 11, 777-788, 1999
  • Kikuchi, A.: Modulation of Wnt signaling by Axin and Axil. Cyrokine Growth Factor Rev. 10, 255-265, 1999

1998

  • Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., and Kikuchi, A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17, 1371-1384, 1998
  • Yamamoto, H., Kishida, S., Uochi, T., Ikeda, S., Koyama, S., Asashima, M., and Kikuchi, A. Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3β and β-catenin and inhibits axis formation of Xenopus embryos. Mol. Cell. Biol. 18, 2867-287, 1998
  • Ikeda, M., Ishida, O., Hinoi, T., Kishida, S., and Kikuchi, A. Identification and characterization of a novel protein interacting with Ral-binding protein 1, a putative effector protein of Ral. J. Biol. Chem. 273, 814-821, 1998
  • Shirouzu, M., Morinaka, K., Koyama, S., Hu, C-D., Hori-Tamura, N., Okada, T., Kariya, K., Kataoka, T., Kikuchi, A., and Yokoyama, S. Interactions of the amino acid residues at position 31 of the c-Ha-Ras protein with Raf-1 and RalGDS. J. Biol. Chem. 273, 7737-7742, 1998
  • Kishida, S., Yamamoto, H., Ikeda, S., Kishida, M., Sakamoto, I., Koyama, S., and Kikuchi, A. Axin, a negative regulator of the Wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of β-catenin. J. Biol. Chem. 273, 10823-10826, 1998
  • Kigawa, T., Endo, M., Ito, Y., Shirouzu, M., Kikuchi, A., and Yokoyama, S. Solution structure of the Ras-binding domain of RGL. FEBS Lett. 441, 413-418, 1998
  • Watari, Y., Kariya, K., Shibatohge, M., Liao, Y., Hu, C., Goshima, M., Tamada, M., Kikuchi, A., and Kataoka, T. Identification of Ce-AF-6, a novel Caenorhabditis elegans protein, as a putative Ras effector. GENE 224, 53-58, 1998

Representative publications before 1997

[ 1997 ]
  • Murai, H., Ikeda, M., Kishida, S., Ishida, O., Okazaki-Kishida, M., Matsuura, Y., and Kikuchi, A. Characterization of Ral GDP dissociation stimulator-like (RGL) activities to regulate c-fos promoter and the GDP/GTP exchange of Ral. J. Biol. Chem. 272, 10483-10490, 1997
  • Fukata, M., Kuroda, S., Fujii, K., Nakamura, T., Shoji, I., Matsuura, Y., Okawa, K., Iwamatsu, A., Kikuchi, A., and Kaibuchi, K. Regulation of cross-linking of actin filament by IQGAP1, a target for Cdc42. J. Biol. Chem. 272, 29579-29583, 1997
  • Okazaki, M., Kishida, S., Hinoi, T., Hasegawa, T., Tamada, M., Kataoka, T., and Kikuchi, A. Synergistic activation of c-fos promoter activity by Raf and Ral GDP dissociation stimulator. Oncogene 14, 515-521, 1997
  • Kishida, S., Koyama, S., Matsubara, K., Kishida, M., Matsuura, Y., and Kikuchi, A. Colocalization of Ras and Ral on the membrane is required for Ras-dependent Ral activation through Ral GDP dissociation stimulator. Oncogene 15, 2899-2907, 1997
[ 1996 ]
  • Kikuchi, A., and Williams, L.T. Regulation of interaction of ras p21 with RalGDS and Raf-1 by cyclic AMP-dependent protein kinase. J. Biol. Chem. 271, 588-594, 1996
  • Akasaka, K., Tamada, M., Wang, F., Kariya, K., Shima, F., Kikuchi, A., Shirouzu, M., Yokoyama, S., Yamamoto, M., and Kataoka, T. Differential structural requirements for interaction of Ras protein with its distinct downstream effectors. J. Biol. Chem. 271, 5353-5360, 1996
  • Hinoi, T., Kishida, S., Koyama, S., Ikeda, M., Matsuura, Y., and Kikuchi, A. Post-translational modifications of Ras and Ral are important for the action of Ral GDP dissociation stimulator. J. Biol. Chem. 271, 19710-19716, 1996
  • Li, S., Song, K.S., Koh, S.S., Kikuchi, A., and Lisanti, M.P. Baculovirus-based expression of mammalian caveolin in Sf21 insect cells. J. Biol. Chem. 271, 28647-28654, 1996
  • Okazaki, M., Kishida, S., Murai, H., Hinoi, T., and Kikuchi, A. Ras-interacting domain of Ral GDP dissociation stimulator like (RGL) reverses v-Ras-induced transformation and Raf-1 activity in NIH3T3 cells. Cancer Res. 56, 2387-2392, 1996
[ 1995 ]
  • MacNicol, A.M., Muslin, A.J., Howard, E.L., Kikuchi, A., MacNicol, M.C., and Williams, L.T. Regulation of Raf-1 dependent signaling during early Xenopus development. Mol. Cell. Biol. 15, 6686-6693, 1995
[ 1994 ]
  • Kikuchi, A., Demo, S. D., Ye, Z., Chen, Y., and Williams, L. T. ralGDS family members interact with the effector loop of ras p21. Mol. Cell. Biol. 14, 7483-7491, 1994
  • Kikuchi, A., and Williams, L. T. The post-translational modification of ras p21 is important for Raf-1 activation. J. Biol. Chem. 269, 20054-20059, 1994
  • Fantl, W. J., Muslin, A. J., Kikuchi, A., Martin, J. A., MacNicol, A. M., Gross, R. G., and Williams, L. T. Activation of Raf-1 by 14-3-3 proteins. Nature 371, 612-614, 1994
[ 1993 ]
  • Miura, Y., Kikuchi, A., Musha, T., Kuroda, S., Yaku, H., Sasaki, T., and Takai, Y. Regulation of morphology by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in Swiss 3T3 cells. J. Biol. Chem. 268, 510-515, 1993
  • Takaishi, K., Kikuchi, A., Kuroda, S., Kotani, K., Sasaki, T., and Takai, Y. Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility. Mol. Cell. Biol. 13, 72-79, 1993
[ 1992 ]
  • Sugai, M., Hashimoto, K., Kikuchi, A., Inoue, S., Okumura, H., Matsumoto, K., Goto, Y., Ohgai, H., Moriishi, K., Syuto, B., Yoshikawa, K., Suginaka, H., and Takai, Y. Epidermal cell differentiation inhibitor ADP-ribosylates small GTP-binding proteins and induces hyperplasia of epidermis. J. Biol. Chem. 267, 2600-2604, 1992
  • Hirata, K., Kikuchi, A., Sasaki, T., Kuroda, S., Kaibuchi, K., Matsuura, Y., Seki, H., Saida, K., and Takai, Y. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J. Biol. Chem. 267, 8719-8722, 1992
  • Kikuchi, A., Kuroda, S., Sasaki, T., Kotani, K., Hirata, K., Katayama, M., and Takai, Y. Functional interactions of stimulatory and inhibitory GDP/GTP exchange proteins and their common substrate small GTP-binding protein. J. Biol. Chem. 267, 14611-14615, 1992
  • Regazzi, R., Kikuchi, A., Takai, Y., and Wollheim, C.B. The small GTP-binding proteins in the cytosol of insulin-secreting cells are complexed to GDP dissociation inhibitor proteins. J. Biol. Chem. 267, 17512-17519, 1992
  • Yoshida, Y., Kawata, M., Miura, Y., Musha, T., Sasaki, T., Kikuchi, A., and Takai, Y. Microinjection of smg/rap1/Krev-1 p21 into Swiss 3T3 cells induces DNA synthesis and morphological changes. Mol. Cell. Biol. 12, 3407-3414, 1992
  • Kikuchi, A., Kaibuchi, K., Hori, Y., Nonaka, H., Sakoda, T., Kawamura, M., Mizuno, T., and Takai, Y. Molecular cloning of the human cDNA for a stimulatory GDP/GTP exchange protein for c-Ki-ras p21 and smg p21. Oncogene 7, 289-293, 1992
  • Kotani, K., Kikuchi, A., Doi, K., Kishida, S., Sakoda, T., Kishi, K., and Takai, Y. The functional domain of the stimulatory GDP/GTP exchange protein (smg GDS) which interacts with the C-terminal geranylgeranylated region of rap1/Krev-1/smg p21. Oncogene 7, 1699-1704, 1992
[ 1991 ]
  • Isomura, M., Kikuchi, A., Ohga, N., and Takai, Y. Regulation of binding of rhoB p20 to membranes by its specific regulatory protein, GDP dissociation inhibitor. Oncogene 6, 119-124, 1991
  • Hori, Y., Kikuchi, A., Isomura, M., Katayama, M., Miura, Y., Fujioka, H., Kaibuchi, K., and Takai, Y. Post-translational modifications of the C-terminal region of the rho protein are important for its interaction with membranes and the stimulatory and inhibitory GDP/GTP exchange proteins. Oncogene 6, 515-522, 1991
  • Takayama, K., Furukawa, K., Abe, K., Kawase, Y., Mizoguchi, A., Kikuchi, A., Takai, Y., Matsui, Y., Teranishi, Y., Nakayama, E., and Shiku, H. Similarity of expression of low molecular weight G proteins smg p21A and ras p21 in normal and malignant human tissues. Cancer Res. 51, 2223-2228, 1991
[ 1990 ]
  • Sasaki, T., Kikuchi, A., Araki, S., Hata, Y., Isomura, M., Kuroda, S., and Takai, Y. Purification and characterization from bovine brain cytosol of a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras p21-like GTP-binding protein. J. Biol. Chem. 265, 2333-2337, 1990
  • Hata, Y., Kikuchi, A., Sasaki, T., Schaber, M.D., Gibbs, J.B., and Takai, Y. Inhibition of the ras p21 GTPase-activating protein-stimulated GTPase activity of c-Ha-ras p21 by smg p21 having the same putative effector domain as ras p21s. J. Biol. Chem. 265, 7104-7107, 1990
  • Ueda, T., Kikuchi, A., Ohga, N., Yamamoto, J., and Takai, Y. Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. J. Biol. Chem. 265, 9373-9380, 1990
  • Mizoguchi, A., Kim, S., Ueda, T., Kikuchi, A., Yorifuji, H., Hirokawa, N., and Takai, Y. Localization and subcellular distribution of smg p25A, a ras p21-like GTP-binding protein, in rat brain. J. Biol. Chem. 265, 11872-11879, 1990
  • Araki, S., Kikuchi, A., Hata, Y., Isomura, M., and Takai, Y. Regulation of reversible binding of smg p25A, a ras p21-like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor. J. Biol. Chem. 265, 13007-13015, 1990
  • Kim, S., Mizoguchi, A., Kikuchi, A., and Takai, Y. Tissue and subcellular distributions of the smg-21/rap1/ Krev-1 proteins which are partly distinct from those of c-ras p21s. Mol. Cell. Biol. 10, 2645-2652, 1990
  • Matsui, Y., Kikuchi, A., Araki, S., Hata, Y., Kondo, J., Teranishi, Y., and Takai, Y. Molecular cloning and characterization of a novel type of regulatory protein (GDI) for smg p25A, a ras p21-like GTP-binding protein. Mol. Cell. Biol. 10, 4116-4122, 1990
  • Fukumoto, Y., Kaibuchi, K., Hori, Y., Fujioka, H., Araki, S., Ueda, T., Kikuchi, A., and Takai, Y. Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5, 1321-1328, 1990
[ 1989 ]
  • Ohmori, T., Kikuchi, A., Yamamoto, K., Kim, S., and Takai, Y. Small molecular weight GTP-binding proteins in human platelet membranes purification and characterization of a novel GTP-binding protein with a molecular weight of 22,000. J. Biol. Chem. 264, 1877-1881, 1989
  • Kikuchi, A., Sasaki, T., Araki, S., Hata, Y., and Takai, Y. Purification and characterization from bovine brain cytosol of two GTPase-activating proteins specific for smg p21, a GTP-binding protein having the same effector domain as c-ras p21s. J. Biol. Chem. 264, 9133-9136, 1989
  • Kawata, M., Kikuchi, A., Hoshijima, M., Yamamoto, K., Hashimoto, E., Yamamura, H., and Takai, Y. Phosphorylation of smg p21, a ras p21-like GTP-binding protein, by cyclic AMP-dependent protein kinase in a cell-free system and in response to prostaglandin E1 in intact human platelets. J. Biol. Chem. 264, 15688-15695, 1989
[ 1988 ]
  • Kikuchi, A., Yamashita, T., Kawata, M., Yamamoto, K., Ikeda, K., Tanimoto, T., and Takai, Y. Purification and characterization of a novel GTP-binding protein with a molecular weight of 24,000 from bovine brain membranes. J. Biol. Chem. 263, 2897-2904, 1988
  • Matsui, Y., Kikuchi, A., Kondo, J., Hishida, T., Teranishi, Y., and Takai, Y. Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weights of 25,000 from bovine brain. J. Biol. Chem. 263, 11071-11074, 1988
  • Kikuchi, A., Yamamoto, K., Fujita, T., and Takai, Y. ADP-ribosylation of the bovine brain rho protein by botulinum toxin type C1. J. Biol. Chem. 263, 16303-16308, 1988
  • Yamashita, T., Yamamoto, K., Kikuchi, A., Kawata, M., Kondo, J., Hishida, T., Teranishi, Y., Shiku, H., and Takai, Y. Purification and characterization of c-Ki-ras p21 from bovine brain crude membranes. J. Biol. Chem. 263, 17181-17188, 1988
[ 1987 ]
  • Kikuchi, A., Ikeda, K., Kozawa, O., and Takai, Y. Modes of inhibitory action of protein kinase C in the chemotactic peptide-induced formation of inositol phosphates in differentiated human leukemic (HL-60) cells. J. Biol. Chem. 262, 6766-6770, 1987
[ 1986 ]
  • Kaibuchi, K., Tsuda, T., Kikuchi, A., Tanimoto, T., Yamashita, T., and Takai, Y. Possible involvement of protein kinase C and calcium ion in growth factor-induced expression of c-myc oncogene in Swiss 3T3 fibroblasts. J. Biol. Chem. 261, 1187-1192, 1986
  • Kikuchi, A., Kozawa, O., Kaibuchi, K., Katada, T., Ui, M., and Takai, Y. Direct evidence for involvement of a guanine nucleotide-binding protein in chemotactic peptide-stimulated formation of inositol bisphosphate and trisphosphate in differentiated human leukemic (HL-60) cells Reconstitution with Gi or Go of the plasma membranes ADP-ribosylated by pertussis toxin. J. Biol. Chem. 261, 11558-11562, 1986
  • Hoshijima, M., Kikuchi, A., Tanimoto, T., Kaibuchi, K., and Takai, Y. Formation of a phorbol ester-binding fragment from protein kinase C by proteolytic digestion. Cancer Res. 46, 3000-3004, 1986
  • Kikuchi, A., Kozawa, O., Hamamori, Y., Kaibuchi, K., and Takai, Y. Inhibition of chemotactic peptide-induced phosphoinositide hydrolysis by phorbol esters through the activation of protein kinase C in differentiated human leukemia (HL-60) cells. Cancer Res. 46, 3401-3406, 1986
PAGE TOP
Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University
ADDRESS 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan PHONE 81-6-6879-3410 FAX 81-6-6879-3419 akikuchi molbiobc.med.osaka-u.ac.jp
Copyright (c) Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University. All Rights Reserved.