PUBLICATIONS

Kawahara group (2011~)

Research Articles

  1. Gallego A, Hartasánchez DA, Brasó-Vives M, Garcia-Ramallo E, Lopez-Valenzuela M, Baena N, Guitart M, Fernández-Bellon H, Kondova I, Bontrop R, Kawahara Y, Espinosa-Parrilla Y. RNA editing independently occurs at three mir-376a-1 sites and may compromise the stability of the microRNA hairpin. Gene, 628; 109-116, 2017.
  2. Uemura Y, Oshima T, Yamamoto M, Reyes CJ, Costa Cruz PH, Shibuya T, *Kawahara Y. Matrin3 binds directly to intronic pyrimidine-rich sequences and controls alternative splicing. Genes to Cells, 22(9); 785-798, 2017.
  3. Kanemitsu Y, Fujitani M, Fujita Y, Zhang S, Su YQ, Kawahara Y, Yamashita T. The RNA-binding protein MARF1 promotes cortical neurogenesis through its RNase activity domain. Scientific Reports, 7(1); 1155, 2017.
  4. Miyake K, Ohta T, Nakayama H, Doe N, Terao Y, Oiki E, Nagatomo I, Yamashita Y, Abe T, Nishikura K, Kumanogoh A, Hashimoto K, *Kawahara Y. CAPS1 RNA Editing Promotes Dense Core Vesicle Exocytosis. Cell Reports, 17; 2004-2014, 2016. F1000Prime
  5. Li Q, Yokoshi M, Okada H, *Kawahara Y. The cleavage pattern of TDP-43 determines its rate of clearance and cytotoxicity. Nature Communications, 6; 6183, 2015.
  6. Li Q, Uemura Y, *Kawahara Y. Cross-Linking and Immunopresipitation of Nuclear RNA-Binding Proteins. Methods in Molecular Biology,1262; 247-263, 2015.
  7. #Yokoshi M, #Li Q, #Yamamoto M, Okada H, Suzuki Y, *Kawahara Y. Direct binding of Ataxin-2 to distinct elements in 3’UTRs promotes mRNA stability and protein expression. Molecular Cell, 55(2); 186-198, 2014. (#Co-first authors)
  8. Nakahama T, Hanieh H, Nguyen NT, Chinen I, Ripley B, Millrine D, Lee S, Nyati KK, Dubey PK, Chowdhury K, Kawahara Y, Kishimoto T. Aryl hydrocarbon receptor-mediated induction of the miR-132/212 cluster promotes TH17 cell differentiation. Proceedings of the National Academy of Sciences U. S. A., 110(29); 11964-11969, 2013.
  9. Matsumoto S, Sakata Y, Nakatani D, Suna S, Usami M, Hara M, Kitamura T, Hamasaki T, Nanto S, *Kawahara Y, *Komuro I. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circulation Research, 113(3); 322-326, 2013. (*Co-corresponding authors)
  10. Matsumoto S, Sakata Y, Nakatani D, Suna S, Mizuno H, Shimizu M, Usami M, Sasaki T, Sato H, Kawahara Y, Hamasaki T, Nanto S, Hori M and Komuro I. A Subset of Circulating MicroRNAs are Predictive for Cardiac Death After Discharge for Acute Myocardial Infarction. Biochemical and Biophysical Research Communications, 2012 427(2); 280-284, 2012.
  11. Kin K, Miyagawa S, Fukushima S, Shirakawa Y, Torikai K, Shimamura K, Kawahara Y, Daimon T, Kuratani T, Sawa Y. Tissue- and plasma-specific microRNA signatures for atherosclerotic abdominal aortic aneurysm. Journal of the American Heart Association, 1; e000745, 2012.
  12. *Kawahara Y. Quantification of adenosine-to-inosine editing of microRNAs using a conventional method. Nature Protocols, 7(7); 1426-1437, 2012.
  13. *Kawahara Y and Mieda-Sato I. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proceedings of the National Academy of Sciences U. S. A., 109 (9); 3347-3352, 2012. (*Corresponding author)

Review Articles & Books

  1. *Kawahara Y, Human diseases caused by germline and somatic abnormalities in microRNA and microRNA-related genes.
    Congenital Anomalies, 54(1); 12-21, 2014.
  2. Valente L, Kawahara Y, Zinshteyn B, Iizasa H and Nishikura K. Post-transcriptional gene regulation by an Editor: ADAR and its role in RNA Editing. Post-transcriptional gene regulation: RNA processing in eukaryotes. (Ed. Jane Wu) Wiley-VCH book, 41-82, 2013.

Japanese Reviews

  1. 河原行郎. CLIP法とその改良法によるタンパク質結合RNAの高解像度解析. 実験医学(別冊), 149-158, 2016.
  2. 三宅浩太郎, 中濱泰祐, 河原行郎. 自己免疫疾患とRNA編集. 実験医学(増刊), 33(20): 3339-3344, 2015.
  3. 河原行郎. 神経疾患をmicroRNAで診断する. Clinical Neuroscience, 33(11): 1302-1304, 2015.
  4. 余越萌, 河原行郎. マイクロRNA. 生体の科学, 66(5): 478-479, 2015.
  5. 河原行郎. 神経変性疾患の発症メカニズムUp-to-Date. BIO Clinica, 30(7): 705-708, 2015.
  6. 余越萌, 河原行郎. RNA代謝異常を介した神経変性疾患の発症病態. ファルマシア, 51(1): 37-41, 2015.
  7. 余越萌, 河原行郎. 神経変性疾患関連タンパク質Ataxin-2は3’非翻訳領域にある特定の配列に直接結合することによって、mRNAの安定性を促進しタンパク質発現を増加させる. 新着論文レビュー, e9044, 2014
  8. 植村有里・河原行郎. RNA代謝と神経変性. Brain Medical, 26(3): 209-215, 2014.
  9. 河原行郎・塩見美喜子. RNA疾患研究の新展開. Medical Science Digest 臨時増刊号 RNA疾患 (河原行郎・塩見美喜子編輯), 40(7): 324-325, 2014.
  10. 河原行郎. ノンコーディングRNAと神経変性疾患. 医学のあゆみ, 247(5): 421-426, 2013.
  11. 河原行郎. 筋萎縮性側索硬化症とRNA結合タンパク質. 領域融合レビュー, 2: e010, 2013.
  12. 余越萌, 河原行郎. microRNAの修飾とその機能. 実験医学(増刊), 31(7): 1124-1131, 2013.
  13. 河原行郎. microRNA. 分子脳血管病. 11(4): 431-434, 2012.
  14. 河原行郎. マイクロRNA. 分子精神医学. 11(3): 172-177, 2011.

Hayashi and Morita group (2011~)

Research Articles

  1. Watanabe B, Minami S, Ishida H, Yoshioka R, Nakagawa Y, Morita T, Hayashi K. Stereospecific inhibitory effects of CCG-1423 on the cellular events mediated by Myocardin-Related Transcription Factor A. PLoS One, 10: e0136242, 2015.
  2. Hayashi K, Murai T, Oikawa H, Masuda T, Muehlich S, Prywes R, Morita T. A novel inhibitory mechanism of MRTF-A/B on the ICAM-1 gene expression in vascular endothelial cells. Scientific Reports, 5: 10627, 2015.
  3. Morita T, Hayashi K. Arp5 is a key regulator of myocardin in smooth muscle cells. Journal of Cell Biology, 204: 683-696, 2014.
  4. Hayashi K, Watanabe B, Nakagawa Y, Minami S, Morita T. RPEL proteins are the molecular targets for CCG-1423, an inhibitor of Rho signaling. PLoS ONE, 9: e89016, 2014.
  5. Morita T, Hayashi K. G-actin sequestering protein thymosin-b4 regulates the activity of myocardin-related transcription factor.
    Biochemical and Biophysical Research Communications, 437: 331-335, 2013.
  6. Hayashi K, Morita T. Importance of dimer formation of myocardin family members in the regulation of their nuclear export.
    Cell Structure and Function, 38: 123-134, 2013.
  7. Hayashi K, Morita T. Differences in the nuclear export mechanism between myocardin and myocardin-related transcription factors A. The Journal of Biological Chemistry, 288: 5743-5755, 2013.
  8. Tanokashira D, Morita T, Hayashi K, Mayanagi T, Fukumoto K, Kubota Y, Yamashita T, Sobue K, Glucocorticoid suppresses dendritic spine development mediated by down-regulation of caldesmon expression. Journal of Neuroscience, 32:14583?14591, 2012.
  9. Morita T, Mayanagi T, Sobue K. Caldesmon regulates axon extension through interaction with Myosin II.
    The Journal of Biological Chemistry, 287(5); 3349-3356  2012.