再生医療

臍帯血造血幹細胞を用いた脳梗塞治療法の開発

プロジェクト 責 任 者

神戸医療産業都市推進機構 脳循環代謝研究部

研究員 小川 優子

プロジェクト概要

本研究の目的:X線照射により他家移植可能な造血幹細胞製剤(XR細胞)を開発し、脳梗塞治療に応用する。

◆ 細胞製剤の概要

- 1. 製剤原料:臍帯血
- 2-1. 細胞製剤の特徴①: X線照射

X線照射(15Gy)を行い、幹細胞としての増殖能を除去することで、GVHDや過剰免疫反応、癌化のリスクを抑制。X線照射により幹細胞としての増殖能は失われるが、治療効果は照射前と変わらない。

2-2. 細胞製剤の特徴②: 培養を行わないため、低コストでの提供が可能

密度勾配遠心分離法により造血幹細胞を含む単核球画分(XR細胞)を分離し、凍結保存。 必要時に融解させ、融解後はすぐに投与。洗浄、培養を行わない。

◆ 造血幹細胞の血管再生促進メカニズム

- [1] 病巣部位の血管内皮細胞に到達(ホーミング)した後、短時間の接着
- [2] ギャップ結合 (細胞間トンネル) を介し、造血幹細胞と血管内皮細胞が連結
- [3] 造血幹細胞から血管内皮細胞に対して、**エネルギー源となる低分子メタボライトを供与**、
- [4] 血管内皮細胞同士がギャップ結合で繋がっており、周辺細胞もエネルギー代謝が次々と活性化
- [5] 短時間の接着が離れると、別の細胞と連結し、低分子メタボライトを供与。
- [6] 投与細胞は**血流に乗って移動**し、**病巣部位に生着・分化・増殖しない。**

◆ 治療メカニズムに基づく規格化

造血幹細胞は個体毎に状態が異なるため、治療効果が一律ではない。本研究では、治療メカニズムに基づく規格化を行う。

◆ 脳梗塞モデルマウスに対するXR細胞の治療効果

放射線照射前後、凍結融解後で治療効果は変わらない。

対象疾患 脳梗塞 (亜急性期)

特許情報 PCT/JP2022/026147, PCT/JP2023/007766

技術の特徴 X線照射して幹細胞としての増殖能を抑制した細胞でも、脳梗塞治療には有効である。

Regenerative medicine

Development of Umbilical Cord Blood Derived cellular Drug for Stroke

Principal Investigator Department of Regenerative Medicine Research Institute of Biomedical Research and Innovation at Kobe

Researcher Yuko OGAWA

Project Outline

Purpose:

We will develop hematopoietic stem cell preparations (XR cells) that can be transplanted into other cells by X-ray irradiation and apply them to the treatment of cerebral infarction.

Summary of cell preparations

1. Materials: Umbilical Cord Blood

2-1. Characteristic-1: X-ray irradiation

X-irradiation of whole UCB achieved complete deprivation of both the lymphohematopoietic capacity of Hematopoietic stem/progenitor cells and transforming ability of T-lymphocytes, ensuring risk avoidance for adverse alloimmune reactions as well as tumorigenicity associated with cell administration.

2-2. Characteristic-2: Off the shelf safe allogenic drug at low cost

Cells are isolated by gradient centrifugation without cell culture.

The therapeutic effect of XR cells did not change significantly after freeze-thawing.

♦ Therapeutic mechanism

HSCs : High glucose/Rich energy sources

Vascular endothelial cells: Low glucose/energy sources depleted

- [1] Adhesion for a short time after reaching (homing) the vascular endothelial cells at the lesion site.
- [2] HSCs and vascular endothelial cells are connected through gap iunctions.
- [3] Supply low-molecular metabolites, which serve as an energy source, from HSCs to vascular endothelial cells.
- [4] Vascular endothelial cells are connected to each other by gap junctions, and cells are also metabolically active.
- [5] When the short-term adhesion is released, it connects with another cell and donates low-molecular metabolites.
- [6] The administered cells travel in the bloodstream and do not engraft, differentiate, or proliferate at the lesion site.

♦ Therapeutic effect of XR cells on MCAO

Even though hematopoietic stem/progenitor cell activity was diminished in the XR cells, the regenerative activity was surprisingly conserved and aided recovery from experimental stroke in mice.

Target disease: Stroke (Subacute stage)

Patent: PCT/JP2022/026147, PCT/JP2023/007766

XR cells: Exhibit tissue repair capabilities through the activation of endothelial cells, rather than via cell-

autonomous effects.